Functional lesting

Software Engineering
Andreas Zeller-¢ Saarland University

]*5)‘]3«:,,} L

ing'<

=vVen more f-ﬁ

Software is

Software is

Software is

manifold

Software is

manifold

oftware is

manifold

Ve B

Software is
manifold

wwbwbbbobbhbwbbbBbbbbbbhbbbbb bbb bB bbb b bbb b b Db Db DB Db Db DR D R R R R R S R S R R

W W M. M. NN NN * H * 2 . » mmw 8 N 2 ¥ W EEN: WD MW NN NN W

What to test?

—)
Configurations

Dijkstra’s Curse

Testing can only find the
presence of errors,
not their absence

— S - IR -] R, - .
Configurations

Formal Verification

raction

Formal Verification

Formal Verification

straction

straction

Formal Verification

Abstraction

Zeller’s Variation on
Diikstra

Verification can only find
the absence of errors,
but never their presence

—)
Configurations

Abstraction

The Best of two
\NAaviA

T —_—

Configurations

What to test?

—)
Configurations

Functional lesting

Software Engineering
Andreas Zeller-¢ Saarland University

Testing Tactics

Functional Structural
“black box” “white box”

® Tests based on spec ® Tests based on code
® Test covers as much ® Test covers as much
specified behavior implemented behavior

as possible as possible

Why Functional?

Functional
“black box”

® Program code not necessary

® Early functional test design has benefits

reveals spec problems ¢ assesses testability ¢ gives additional
explanation of spec * may even serve as spec, as in XP

Why Functional?

Functional
“black box”

® Best for missing logic defects

Common problem: Some program logic was simply forgotten
Structural testing would not focus on code that is not there

® Applies at all granularity levels
unit tests ° integration tests ® system tests ® regression tests

Random lesting

® Pick possible inputs uniformly

® Avoids designer bias

A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)

® But treats all inputs as equally valuable

PUNK{TE

()

BUNK{TE

Infinite Monkey Theorem

ANgIe

/ L \ AN 3 5
=15 32 953 0 (290

R 111ETE
CTENIAIUCS
D'

\ RO,
N &S
(-\-' < 1=
3“ J?AIJ“

'
| ~.

232 = 4.294.967.296 232 = 4.294.967.296 um
different values different values ~—

2°4 = 18.446.744.073.709.551.616

different runs

18.446.744.073.709.551.616
Minutes

gadgets-club.com

http://gadgets-club.com

9.223.372.036.854.775.808 Minutes

4.611.686.018.427.387.904 Minutes

18.446.744.073.709.551.616

1 Minute

Systematic Functional Testing

identify
Functional q
specification
identify k ’ derive
Representative
values

’ der:ve

generate
Test case Wests (e
specifications

Independently

testable feature

Testable Features

identify
Functional f , Independently
specification | testable feature

® Decompose system into
independently testable features (ITF)

® An ITF need not correspond to units or
subsystems of the software

® For system testing, ITFs are exposed
through user interfaces or APIs

Testable Fatures

class Roots {
// Solve ax? + bx + ¢ = 0
public roots(double a, double b, double c)

{1 .. }

// Result: values for x
double root_one, root_two;

¥

® What are the independently testable features!?

Testable Fatures

8 00 HP48-R (CX)

HOME ¥

2,518,528 971,89
i
- - ® Consider a multi-function

RAD POLAR CHARS MODES MEMORY STACK PREWY MENU

R (S e | calculator

UP HOME DEF RCL +NUM UNDO PICTURE VIEW SHAP

b P |

m
'}
—
-

-
-

! STO VA
NE lo 4P v

M (8]

a2 ® What are the independently

S T u Y
EQUATION HMATRIX EDIT CMD PURG ARG CLEAR DROP

ENTER +/- EEX DEL - teStabIe featu I”eS?

i Z
USER ENTRY SOLVE PLOT SYMBOLIC () #

(0 I'4 8
TIME STAT
G 4)
170 LIERARY EaLE | «» "
=3 1 2 3 -
CONT OFF = =¥ 4 +— v 4 {}
ON 0 . SPC +

Testable Features

identify
Functional q
specification

identify derive

Independently

testable feature

Representative
values

derive
generate

Test case

Test case

specifications

Representative Values

Independently

® Try to select inputs testable feature

that are especially .
identify BEW
valuable

Representative
® Usually by alles

choosing
representatives of equivalence classes that
are apt to fail often or not at all

Needles in a Haystack

® Jo find needles,
look systematically

® We need to find out
what makes needles special

The space of possible input values
(the haystack)

Systematic Partition Testing

M Failure (valuable test case)

No failure

Failures are sparse in
the space of possible
INnputs ...

... but dense in some
parts of the space

?

f we systematica

cases from each part, we will
include the dense parts

ly test some

Functional testing is one way of
drawing orange lines to isolate
regions with likely failures

Equivalence Partitioning

Input condition

range

Equivalence classes

one valid, two invalid
(larger and smaller)

specific value

one valid, two invalid
(larger and smaller)

member of a set

one valid, one invalid

boolean

one valid, one invalid

Boundary Analysis

Possible test case

® Test at lower range (valid and invalid),
at higher range(valid and invalid), and at center

Example

W UNITED STATES
B POSTAL SERVICE

(010, ZIP Code Look
—- ode Lookup

Search Dy Address Search Dy City
: ; y

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

Submit

ZIP Code

® |nput:
5-digit ZIP code

® Output:
list of cities

® VWhat are
representative
values to test?

Valid ZIP Codes

= UNITED STATES
B POSTAL SERVICE

|. with O cities
as output

(0 is boundary value)

Search Dy Address Search Dy City

2. with | city
as output

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

3. with many cities
as output

Submit >

Invalid ZIP Codes

- UNITED STATES
B POSTAL SERVICE

Search Dy Address Search By City

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

Y7 /)l':i/.'

4. empty input

5. |—4 characters

(4 is boundary value)

6. 6 characters
(6 is boundary value)

/. very long input
8. no digits

9. non-character data

“Special” ZIP Codes

® How about a ZIP code that reads

12345‘; DROP TABLE orders; SELECT
*x FROM zipcodes WHERE ‘zip’ =

® Or a ZIP code with 65536 characters...

® This is security testing

Gutjahr’s Hypothesis

Partition testing

is more effective
than random testing.

Representative Values

identify
Functional Independently
specification testable feature

identify k derive

Representative
i
values

derive

generate
Test case Ueats
specifications

Model-Based lesting

Independently
testable feature
® Have a formal model ,

that specifies software behavior . derive

® Models typically come as

® finite state machines and

® decision structures

return

'y

J’
|
55 .
S5 © Cf ’
o 0
© £
g 2 -
S5 Wait for
Qo %
o = pick up
>0 \
0 o
_
o

Aok uv/

%

Maintenance
(no warranty)

request at

Wait for
returning

LW T

T B
£
wn ©
' @
% 2 ~
, Wait for ’

—

Repah
maintenance

: : - acceptance \
Inite = -
7,
% o@é
O %
&€ o,
component . %
\,06"“ arrives (a) ‘53'(',@ %
a,/, X
= &
[Wait for ' Repalr >
component @lack component (b (regional &
ac I n e i / headquarters) 0(9
component 2
. arrives (C
unable to repair 90,{.0 3 g)_
(not US or EU resident) Of%o 8 5
component @/;,/ o
arrives (c) ¢

Repairm_\

{main
andquaners)

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can
be requested either by calling the maintenance toll free number, or through the
Web site, or by bringing the item to a designated maintenance station.

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courietr.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance

regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.

Once repaired, the product is returned to the customer.

Coverage Criteria

® Path coverage: Tests cover every path

Not feasible in practice due to infinite number of paths

® State coverage: Every node is executed

A minimum testing criterion

® [ransition coverage: Every edge is executed

Typically, a good coverage criterion to aim for

NO
Maintenance

Wait for
returning

Maintenance
(no warranty)

Wait for
pick up

request at

5 Repair
maintenance
station)

Transition A

Coverage

unable (o repair
(not US or By resident)

-

Wait for accept

acceptance estimate

Repaired

al

8) i Reair
(regional
kheadquarters)

Wait for
component
\

S ——

arrives (b)

y (main
headquarters)

State-based Testing

® Protocols (e.g., network communication)
® GUIs (sequences of interactions)

® Objects (methods and states)

. > empty W set up
open

>
acct J setup Accnt acct
deposit
(initial)
/ \CCO u nt States ' Odeposit
working
acct
balance _
credit O withdraw
accntinfo
withdrawal
(final)
Y

@ (dead ﬁonworking

acct close k acct

Decision lables

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2
Special price <
scheduled price
Special price <
Tier |
Special price <
Tier 2

Out

Education

Individual

T

F

T

Edu
discount

Special
price

No
discount

Special
price

Tier |
discount

Special
price

Tier 2
discount

Special
Price

Condition Coverage

® Basic criterion: Test every column
“Don’t care” entries (—) can take arbitrary values

® Compound criterion: Test every combination

Requires 2" tests for n conditions and is unrealistic

® Modified condition decision criterion (MCDC):
like basic criterion, but additionally, modify
each T/F value at least once such that the
outcome changes

Again, a good coverage criterion to aim for

MCDC Criterion

Education

Education account F

Current purchase >
Threshold |

Individual

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier |

T

Special price <
Tier 2

F

T

Out

discount

Special
price

discount

Special
price

Tier |
discount

Special
price

Tier 2
discount

Special
Price

MCDC Criterion

Education

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2
Special price <
scheduled price
Special price <
Tier |
Special price <
Tier 2

Out

Individual

T

F

T

discount

Special
price

No
discount

Special
price

Tier |
discount

Special
price

Tier 2
discount

Special
Price

MCDC Criterion

Education account

Education

T

Current purchase >
Threshold |

Individual

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier |

Special price <
Tier 2

F

T

Out

Edu
discount

Special
price

No
discount

Special

price

Tier |
discount

Special
price

Tier 2
discount

Special
Price

MCDC Criterion

Education

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2
Special price <
scheduled price
Special price <
Tier |
Special price <
Tier 2

Out

Individual

T

F

T

Special
price

No
discount

Special
price

Tier |
discount

Special
price

Tier 2
discount

Special
Price

Weyuker’s Hypothesis

The adequacy of a coverage criterion

can only be intuitively defined.

Mozilla Vulnerabilities

security mailnews content extensions nsprpub
nss base | imap base | xslt | xul webservice | python [spelich pr li
li Src | @util src src p src temp doc soap |pro ||xpco | | src src tests t
frdbl ft X src WS °'_s= LTI
pkix_pl_nss mpi | . - wiguni ma b
a T it T I o b =TT
’ H FEH
% i svg events |xm xpcom [lmet|pre |ins [typ |||==) WLt
addrbook compose html content src @] Emm ITIISC" pthre Pl ALl [I
src outl |src content |doc xtf xmiterm autiwis 1P lii—Hidithr|cp "::;c - i
LTI]g’:” src src [— Tlibaseline TI15Y Icools o || D e
eud |orrm (=3 can b em |1 il R
Iocal ne[:ws e xpcom directory db ef xpinstall
io | glue c-sdk Compiler [Utilitie wizard
src | palm
D:] L HmEn Idap windows |libxpne
bls —H e libraries clie i setup |uni| GUSI
L Ci o
: db reflect |string |typelib libldap [@ —
:a xptcal x pu |sr xpl x suncsdk f__—____]mac
lib/m |pk si (fips|/pk L modules c-sdk | unix
HHEI BHE| &g criu[bit D base tests Idap s—)
oji | plugin -,
manager s tools [sam |l T .ﬂd E@ m libraries g src
src [[test |s Ts |[def | |- build |compo D w
layout JNI gy i) UID obsolete t_‘hr - editor toolkit xpfe
A : base MoreFi | |P
generic style | xul rr ‘ EBE@ libeditor txm | components | airbag
[] base o|)| A html |base |__LJ|'place |his|s |airbag |
= widget CrRficom |lirsre IEROlice—=
o] s Il II - libimg |libfont libprOn | zlib = r — dolpal xre Im
[T |_TTHRS &'—' I png .'ncge dec |s Src mac gtkz = text tXtsv @ | |
i il : e TIEEFAFE 1 | 2851 TRE) —
H 4 tables - mathml! forms B EHEE] ibre libp libb l~_ H L-:Dﬁ CL s e Ll oo Hcassiie
—rm B softupd — @ o e l 052 |beos libical htmiparser |expa | trace- |codes ‘ré Src
= rdf SIE [iﬂ 4 src src p lib li atk |bas|ht [xu
mom R | ibi Is i "[*#" ::ﬂ reireld |f p o=
e src l__ 10 libjar (XMl s —HH libical [libic } [:E s 2T | e
el V9)| (REEEEET)) (== pro |+ Eiixpwi [at[ph netwerk [1 ~I"?m . = Ji;
= k O crwHig| te st dk cck
— 1T EH prin |in [ht (bu gfx at = @ base | protocol == '"595 ac
H o] h
- = xlib lcolg |9 | ™ src [|[http [ftp base src expat_|muc|(boehm
js = "'I src |) base protocol |—LUd ib Ml [HHT
src tamarin T H (5 src Iy H
xpconnect liveco core bfowse:g streamco | test |co l re plugm uriloader | camino | ipc
extha b, src ipcd

1]
11

11

Src IteSt - =) IIIII
nicn b LT
=z2: . e

:Bm bui I I— other-license L
cache dns Il]l 7zst [nban I%‘]] l:l:é] btg e—

s M [:“‘ —HEE e IR lib |mston |view | mail
, java 7zi liFE rdf |mac I src Isrcl ||com I
webclient 1 se |chro === —
: compon| qa tests | |src_moz o d= profile b":’l' db'i" s‘:: web
W

shell |plle printin |[teste |/mfc [w ||| FEH— |l 11 = li_u =
| (08 = FHIC T xpcom = L1 docshell sto |gcon|mini
win fi] % —1_! 11 config caps _seode ioodudl

i 4 maziz:et ST e[o
T+ —| ﬂ

web

i
11
e
g

Pareto’s Law

Approximately 80% of defects

come from 20% of modules

Model-Based lesting

identify
Functional

Independently

testable feature

specification

identify

Representative
values

derive
generate
Test case

Test case

specifications

Deriving Test Case Specs

® |nput values enumerated in previous step
® Now: need to take care of combinations

® Typically, one
uses models an
representative
values to generate o
test cases '

d Representative
values

Test case

specifications

ombinatorial Testing

Server

g T N R
WAy ,v.,“/""A)‘u,‘:’u."u"ff"-": AN ',k, -
AN ‘,'n 1’\,[yl, ‘I'x‘l‘:\\. 1,'1\ y \,' “»I '1’, I[ll‘
"k»,"'l'w""‘ ,I\,‘;,“ \ \,.,‘., A,,lll y‘"y"" :u%

A { y v lh 1 A .',|| '/’lllil'}

W
. R " S
AR R l)
5‘4\:‘/.,\‘". 'lqk\ 7 . u) 1. u l. 1("‘ " A ’ ‘ \ ' "" "l' "' "\" '1\:"‘ \ "l""i 'n
3 A ’15 ‘,* !i‘l"“ 3 "! L% .l‘ WY l." ": '."l’.': "’l“'l]
§ N AN
\v '|‘l '; q \ W \',. W 0y ,,h 1.‘4“‘
) l. !
'\) WY)
g) |" l, ,[/)

L
'\’»‘ 'l' '. l"‘f.' |"1‘ 'lﬁ“' "l|‘

r
":,'H, b

Database

Combinatorial Testing

® Eliminate invalid combinations
IS only runs on Windows, for example

® Cover all pairs of combinations
such as MySQL on Windows and Linux

® Combinations typically generated
automatically

and — hopefully — tested automatically, too

Pairwise lesting

= _Jl @
uuzm m s

e e e]]

.

)
| Millions fconf‘gﬂr tionsSTTa
w flif: | ==

"'Tes INg on ozeLs of different machine

AII eede %1 f‘nd reprdduce proble -

Deriving Test Case Specs

identify
Functional Independently
specification testable feature

identify derive

Representative
i
values

’ derive k

generate
Test case e 2
specifications

Deriving Test Cases

® |mplement test cases in code

® Requires building scaffolding —
i.e., drivers and stubs

generate
Test case Lrmesmass Test case
L specifications

Unit Tests

® Directly access units (= classes, modules,
components...) at their programming
interfaces

® Encapsulate a set of tests as a single
syntactical unit

® Available for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

Running a Test

A test case...
|. sets up an environment for the test
2. tests the unit

3. tears down the environment again.

Testing 2 URL Class

http://www.askigor.org/status.php?id=sample

\ B

| l
Protocol Host Path Query

http://www.askigor.org/status.php?id=sample

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class URLTest extends TestCase {
private URL askigor_url;

// Create new test
public URLTest(String name) { super(name); }

// Assign a name to this test case
public String toString() { return getName(); }

// Setup environment
protected void setUp() {
askigor_url = new URL("http://www.askigor.org/" +
"status.php?id=sample™); }
// Release environment
protected void tearDown() { askigor_url = null;}

// Test for protocol (http, ftp, etc.)
public void testProtocol() {
assertEquals(askigor_url.getProtocol(), "http");

¥

This functional test
// Test for host can be used
public void testHost() { as a specification!
int noPort = -1;

assertkEquals(askigor_url.getHost(), "www.askigor.org");
assertkEquals(askigor_url.getPort(), noPort);

¥

// Test for path
public void testPath() {
assertEquals(askigor_url.getPath(), "/status.php”);

¥

// Test for query part
public void testQuery() {
assertEquals(askigor_url.getQuery(), "id=sample");

¥

// Set up a suite of tests

public static Test suite() {
TestSuite suite = new TestSuite(URLTest.class);
return suite;

h

// Main method: Invokes GUI
public static void main(String args[]) {
String[] testCaseName =
{ URLTest.class.getName() };
// junit.textuil.TestRunner.main(testCaseName);
junit.swinguli.TestRunner.main(testCaseName);
// junit.awtui.TestRunner.main(testCaseName);

JUnit

JUnit "I EI@@

JUnit

Test class name:

' Junit .
|URLTest = lalld

JUnit

v
'v| Reload classes every run Test class name:

URLTest v|| = || Run
- x - X i &l
L A Errors: 0 Failuresl / pejoad classes every run
Results:
| JU
[URLTest X X Fai
Runs: 4/4 Errors: O Failures: 1
i testProtocol
" testHost Results:
" testPath] URLTest [~ | Run
¢ testQuery " testProtocol
| X Failures | # Test Hierarchy " testHost
... X tEStPath _
" testQuery v
| X Failures | # Test Hierarchy
junit.framework. ComparisonFailure: expected: </... > but was: <...> |4
4| at URLTest.testPath{URLT est.java: 41)
T 0041 5 at sun.reflect. NativeMethodAccessorimpl.invokeOQ{Native Method) 2
||n|s EOL SECONES at sun.reflect. NativeM ethodAccessorimpl.invoke{NativeMethodAccessi——
e i - - atho
B »|

[Finished: 0.102 seconds Exit

Deriving Test Cases

identify
Functional

Independently

testable feature

specification

identify derive

Representative

Model
values

derive
generate

h Test case
specifications

Test case

Systematic Functional Testing

identify
Functional q
specification
identify k ’ derive
Representative
values

’ der:ve

generate
Test case Wests (e
specifications

Independently

testable feature

Systematic Functional Testing

identify

Functional

Independently

specification testable feature

Representative

values
% derive g

Test case
specifications

generate

Test case

esting Tactic

Systematic Partition Testing

Failures are sparse in

) ...but dense in some
the space of possible

parts of the space

M Failure (valuable test case)

O No failure inputs ...

o

2 OO0 0O oooooa EIEII:II:IEIEIEIﬂ//\:IﬁEIEIDDEIEI
> OO0 OO0 OOjo0/00 oo ogooad O0OOooooood
é-,-\ OO0 0000 000000 00mEmO0/00 o0 oooo od
‘;ﬁ OO0 OO0 00 0000 OO0 OO/mEO0 0000 oo oo/oo od
P

-g‘i OO0 O00O00 O00/00 OO0 OO/00 OO|0o0 oo oo/oo og
¢ & 000000000000 0000000000a0000aoa
wg'_?:’ OO0 O00O/00 O00/00 OO0 OO/00 OoOo/obo oo oo/oo og
o T |00 00000000 000000000000 0000 00
(9]

a OO 0000 000000000000 e OO0 00 ogad
° OO0 0000 0000 OO0 OO/00 OO/mam 00 00 oo od
c

|_

If we systematically test some

" Functional testing is one way of
cases from each part, we will

drawing orange lines to isolate

Functional
“black box”

include the dense parts

regions with likely failures

Structural
“white box”

: N\ Y
Wait for Maintenance
returning (no warranty)
. - /

request at

(contract number)
—~

Transition
Coverage

~
4 (main 1
_headquarters))

n spec e Tests bas
\ Maintenance)
\ s much e Test cove
avior implemen
as possib

MC/DC Criterion

Education Individual

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2
Special price <
scheduled price

Special price <
Tier | T

Special price < _ _ _ _ F
Tier 2

Special No Special
price [discount| price

Tier | | Special
discount| price

Tier 2 | Special
discount| Price

Out

