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What to test?

—)
Configurations



Dijkstra’s Curse

Testing can only find the
presence of errors,
not their absence
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Formal Verification
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Abstraction

Zeller’s Variation on
Diikstra

Verification can only find
the absence of errors,
but never their presence

—)
Configurations



Abstraction

The Best of two
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Configurations
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Testing Tactics

Functional Structural
“black box” “white box”

® Tests based on spec ® Tests based on code
® Test covers as much ® Test covers as much
specified behavior implemented behavior

as possible as possible



Why Functional?

Functional
“black box”

® Program code not necessary

® Early functional test design has benefits

reveals spec problems ¢ assesses testability ¢ gives additional
explanation of spec * may even serve as spec, as in XP



Why Functional?

Functional
“black box”

® Best for missing logic defects

Common problem: Some program logic was simply forgotten
Structural testing would not focus on code that is not there

® Applies at all granularity levels
unit tests ° integration tests ® system tests ® regression tests



Random lesting

® Pick possible inputs uniformly

® Avoids designer bias

A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)

® But treats all inputs as equally valuable
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Infinite Monkey Theorem
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232 = 4.294.967.296 232 = 4.294.967.296 um
different values different values ~—

2°4 = 18.446.744.073.709.551.616

different runs



18.446.744.073.709.551.616
Minutes

gadgets-club.com


http://gadgets-club.com

9.223.372.036.854.775.808 Minutes



4.611.686.018.427.387.904 Minutes



18.446.744.073.709.551.616

1 Minute
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Testable Features

identify
Functional f , Independently
specification | testable feature

® Decompose system into
independently testable features (ITF)

® An ITF need not correspond to units or
subsystems of the software

® For system testing, ITFs are exposed
through user interfaces or APIs



Testable Fatures

class Roots {
// Solve ax? + bx + ¢ = 0
public roots(double a, double b, double c)

{1 .. }

// Result: values for x
double root_one, root_two;

¥

® What are the independently testable features!?



Testable Fatures
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Testable Features
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Representative Values

Independently

® Try to select inputs testable feature

that are especially .
identify BEW
valuable

Representative
® Usually by alles

choosing
representatives of equivalence classes that
are apt to fail often or not at all




Needles in a Haystack

® Jo find needles,
look systematically

® We need to find out
what makes needles special




The space of possible input values
(the haystack)

Systematic Partition Testing

M Failure (valuable test case)

No failure

Failures are sparse in
the space of possible
INnputs ...

... but dense in some
parts of the space

?

f we systematica

cases from each part, we will
include the dense parts

ly test some

Functional testing is one way of
drawing orange lines to isolate
regions with likely failures



Equivalence Partitioning

Input condition

range

Equivalence classes

one valid, two invalid
(larger and smaller)

specific value

one valid, two invalid
(larger and smaller)

member of a set

one valid, one invalid

boolean

one valid, one invalid




Boundary Analysis

Possible test case

® Test at lower range (valid and invalid),
at higher range(valid and invalid), and at center



Example

W UNITED STATES
B POSTAL SERVICE

(010, ZIP Code Look
—- ode Lookup

Search Dy Address Search Dy City
: ; y

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

Submit

ZIP Code

® |nput:
5-digit ZIP code

® Output:
list of cities

® VWhat are
representative
values to test?



Valid ZIP Codes

= UNITED STATES
B POSTAL SERVICE

|. with O cities
as output

(0 is boundary value)

Search Dy Address Search Dy City

2. with | city
as output

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

3. with many cities
as output

Submit >



Invalid ZIP Codes

- UNITED STATES
B POSTAL SERVICE

Search Dy Address Search By City

Find a list of cities that are in a ZIP Code.

* Required Fields
*ZIP Code 12345

Y7 /)l':i/.'

4. empty input

5. |—4 characters

(4 is boundary value)

6. 6 characters
(6 is boundary value)

/. very long input
8. no digits

9. non-character data



“Special” ZIP Codes

® How about a ZIP code that reads

12345‘; DROP TABLE orders; SELECT
*x FROM zipcodes WHERE ‘zip’ =

® Or a ZIP code with 65536 characters...

® This is security testing



Gutjahr’s Hypothesis

Partition testing

is more effective
than random testing.




Representative Values
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Model-Based lesting

Independently
testable feature
® Have a formal model ,

that specifies software behavior . derive

® Models typically come as

® finite state machines and

® decision structures
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Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can
be requested either by calling the maintenance toll free number, or through the
Web site, or by bringing the item to a designated maintenance station.

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courietr.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance

regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.

Once repaired, the product is returned to the customer.



Coverage Criteria

® Path coverage: Tests cover every path

Not feasible in practice due to infinite number of paths

® State coverage: Every node is executed

A minimum testing criterion

® [ransition coverage: Every edge is executed

Typically, a good coverage criterion to aim for
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State-based Testing

® Protocols (e.g., network communication)
® GUIs (sequences of interactions)

® Objects (methods and states)
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Decision lables

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2
Special price <
scheduled price
Special price <
Tier |
Special price <
Tier 2

Out

Education

Individual

T

F

T

Edu
discount

Special
price

No
discount

Special
price

Tier |
discount

Special
price

Tier 2
discount

Special
Price




Condition Coverage

® Basic criterion: Test every column
“Don’t care” entries (—) can take arbitrary values

® Compound criterion: Test every combination

Requires 2" tests for n conditions and is unrealistic

® Modified condition decision criterion (MCDC):
like basic criterion, but additionally, modify
each T/F value at least once such that the
outcome changes

Again, a good coverage criterion to aim for



MCDC Criterion
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MCDC Criterion

Education

Education account

Current purchase >
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Weyuker’s Hypothesis

The adequacy of a coverage criterion

can only be intuitively defined.
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Pareto’s Law

Approximately 80% of defects

come from 20% of modules
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Deriving Test Case Specs

® |nput values enumerated in previous step
® Now: need to take care of combinations

® Typically, one
uses models an
representative
values to generate o
test cases '

d Representative
values

Test case

specifications



ombinatorial Testing
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Combinatorial Testing

® Eliminate invalid combinations
IS only runs on Windows, for example

® Cover all pairs of combinations
such as MySQL on Windows and Linux

® Combinations typically generated
automatically

and — hopefully — tested automatically, too



Pairwise lesting
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Deriving Test Case Specs
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Deriving Test Cases

® |mplement test cases in code

® Requires building scaffolding —
i.e., drivers and stubs

generate
Test case Lrmesmass Test case
L specifications




Unit Tests

® Directly access units (= classes, modules,
components...) at their programming
interfaces

® Encapsulate a set of tests as a single
syntactical unit

® Available for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)



Running a Test

A test case...
|. sets up an environment for the test
2. tests the unit

3. tears down the environment again.



Testing 2 URL Class

http://www.askigor.org/status.php?id=sample

\ B

| l
Protocol Host Path Query



http://www.askigor.org/status.php?id=sample

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class URLTest extends TestCase {
private URL askigor_url;

// Create new test
public URLTest(String name) { super(name); }

// Assign a name to this test case
public String toString() { return getName(); }

// Setup environment
protected void setUp() {
askigor_url = new URL("http://www.askigor.org/" +
"status.php?id=sample™); }
// Release environment
protected void tearDown() { askigor_url = null;}



// Test for protocol (http, ftp, etc.)
public void testProtocol() {
assertEquals(askigor_url.getProtocol(), "http");

¥

This functional test
// Test for host can be used
public void testHost() { as a specification!
int noPort = -1;

assertkEquals(askigor_url.getHost(), "www.askigor.org");
assertkEquals(askigor_url.getPort(), noPort);

¥

// Test for path
public void testPath() {
assertEquals(askigor_url.getPath(), "/status.php”);

¥

// Test for query part
public void testQuery() {
assertEquals(askigor_url.getQuery(), "id=sample");

¥



// Set up a suite of tests

public static Test suite() {
TestSuite suite = new TestSuite(URLTest.class);
return suite;

h

// Main method: Invokes GUI
public static void main(String args[]) {
String[] testCaseName =
{ URLTest.class.getName() };
// junit.textuil.TestRunner.main(testCaseName);
junit.swinguli.TestRunner.main(testCaseName);
// junit.awtui.TestRunner.main(testCaseName);



JUnit
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Deriving Test Cases
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Systematic Functional Testing
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Systematic Partition Testing
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